

ESS reliability and availability approach

Enric Bargalló European Spallation Source, ESS, Lund, Sweden

> ARW 2015, Knoxville, Tennessee, USA April 28, 2015

Outline

- The European Spallation Source
- ESS reliability and availability requirements
- Requirements allocation
- Beam degradation
- Accelerator RAMI analyses
- Conclusions

The European Spallation Source

European Spallation Source

EUROPEAN SPALLATION SOURCE

Main headlines

- World's leading neutron source
- A user facility providing outstanding scientific performance

- High brightness
- High reliability
- Environmentally friendly

Technical scope

- Accelerator: protons, 5 MW, long pulse, 2.86 ms, 14 Hz
- Target: Tungsten rotating wheel, helium cooled, new moderator.
- 22 instruments
- Construction budget 1.8 B€
- Operation budget 140 M€/year
- Receiving 2000-3000 users per year

The ESS project

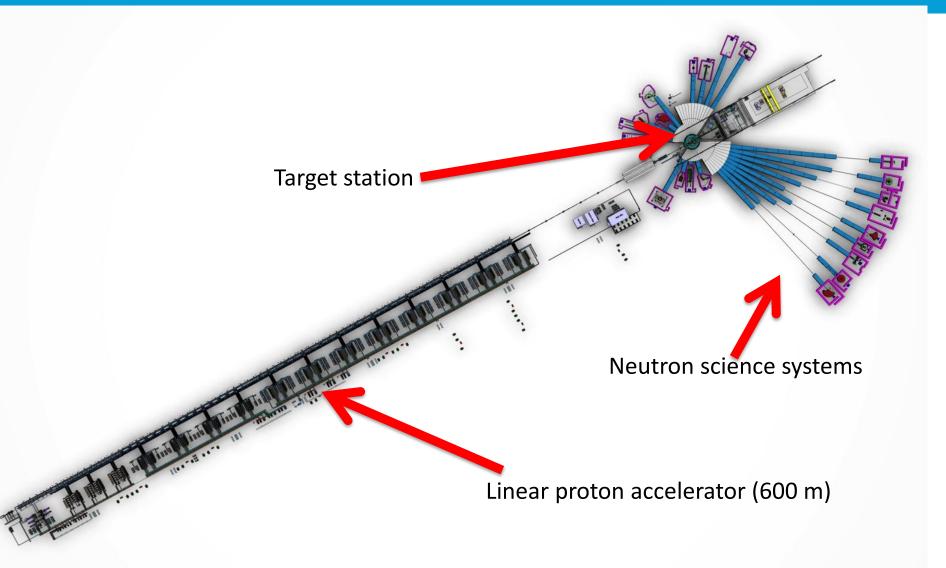
EUROPEAN SPALLATION SOURCE

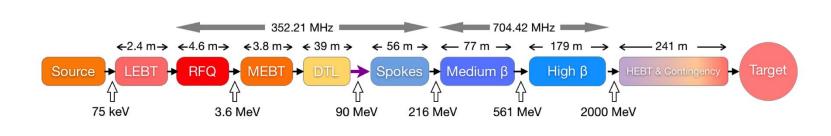
International collaboration

Sweden and Denmark:

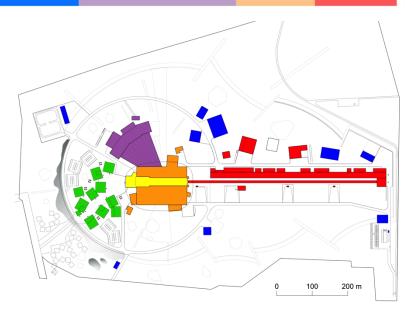
47.5% Construction 15% Operations 100% Cash

Main milestones of the project


Construction



ESS production of neutrons for science



ESS Linac Parameters

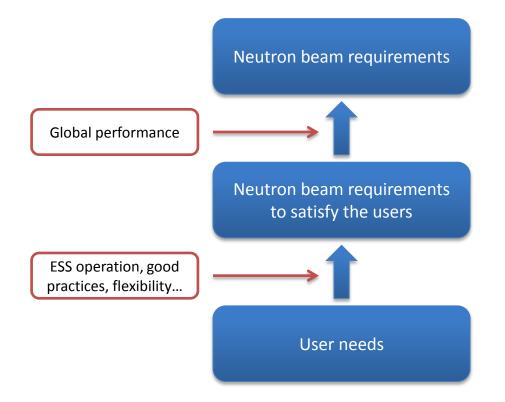
Particle species	р
Average power	5 MW
Energy	2.0 GeV
Current	62.5 mA
Peak power	125 MW
Pulse length	2.86 ms
Rep rate	14 Hz
Max cavity surface field	45 MV/m
Operating time	5200 h/year

EUROPEAN SPALLATION

SOURCE

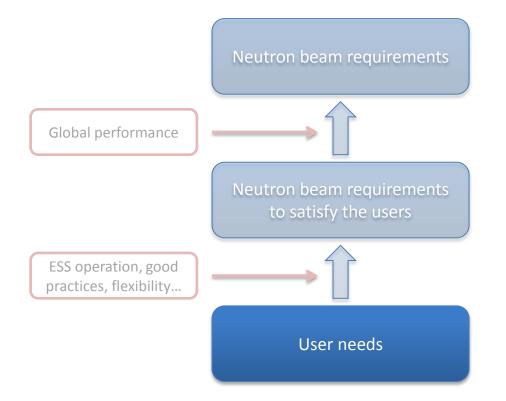
Reliability and Availability at ESS

- **ESS goal**: science produced by the users
 - High brightness neutron beam
 - High reliability and availability of the beam
- Reliability and availability analyses goals:
 - Translate users needs into technical requirements
 - Analyze the design to see if the requirements can be achieved
 - Propose changes if necessary
 - Give a global overview of the future operation of the machine in the design phase



ESS reliability and availability requirements

- ESS requirements have been divided into:
 - Neutron Source requirements:
 - Accelerator
 - Target
 - Integrated Controls System (ICS)
 - Site Infrastructure (SI) (only conventional subsystems that could affect the neutron beam production)
 - NSS (Neutron Scattering Systems) requirements:
 - Instrument Systems (including Guide Bunker & Monolith Shroud),
 - Science Support Systems (SSS)
 - SI that supplies to the NSS subsystems.


Neutron beam reliability and availability requirements

EUROPEAN

SPALLATION SOURCE

Neutron beam reliability and availability requirements

EUROPEAN

SPALLATION SOURCE

Users at ESS

- A common effort was done to understand what the users need from the neutron beam reliability to perform their experiments
- People involved
 - instrument scientists
 - reliability experts
 - people with experience with users in similar facilities
- The outcome was the document "Experiments expected at ESS and their neutron beam needs" (ESS-0017709)

Users at ESS

• ESS goal:

At least 90% of the users should receive a neutron beam that will allow them to execute the full scope of their experiments.

• Neutron beam needs:

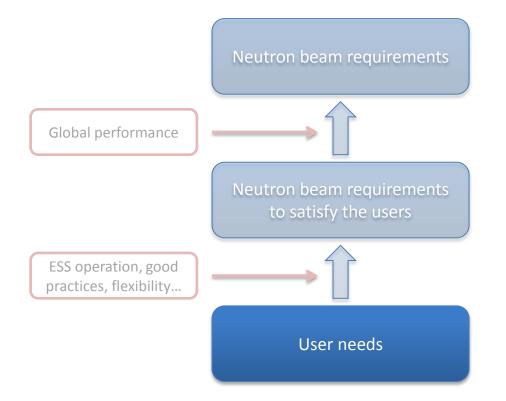
Kinetic experiments

90% reliability for the duration of the measurement

Failure: Beam trip with a duration of more than 1/10th of the measurement length

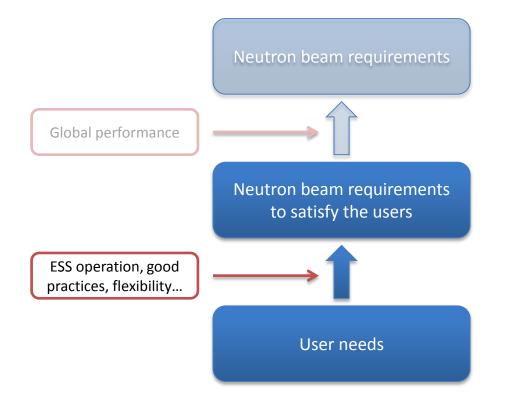
Integrated-flux experiments

90% beam availability and 80% average beam power for the duration of the experiments


Beam unavailable: power less than 50% for more than one minute

RAMI for the users

- The **global ESS availability figure** is not the most important
- What is important for them is the **distribution of failures**:
 - Failures (or beam trips) of less than 1 hour can be easily accepted
 - Failures from 1 hour to 24 hours are the most problematic
 - Failures longer than some days will imply to reschedule the experiments (also happen in reactors)
 - Beam trips announcements would be very beneficial for the users


Neutron beam reliability and availability requirements

EUROPEAN

SPALLATION SOURCE

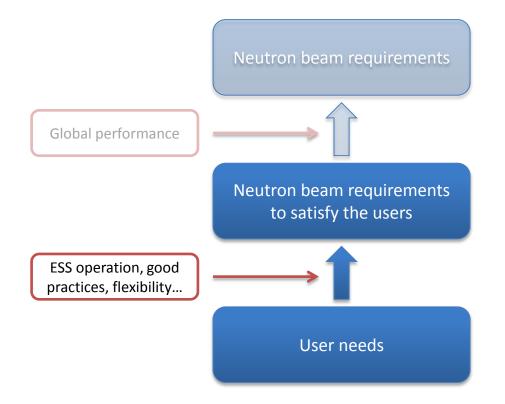
Neutron beam reliability and availability requirements

EUROPEAN

SPALLATION SOURCE

 \rightarrow

Neutron beam to satisfy the users

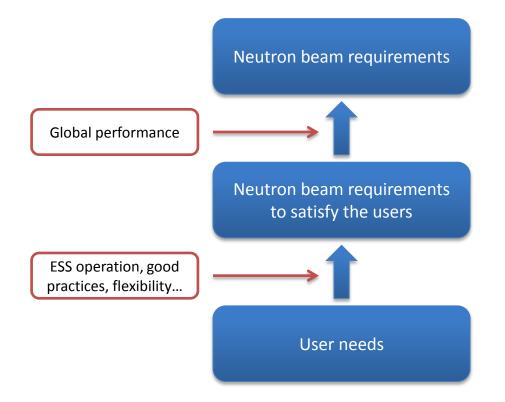


- Taking into account:
 - Specific needs for Kinetic and for Integrated-flux experiments
 - Good practices and the operational flexibility described in the users' document. E.g. start 4 hours later, use optional study days, etc.
- The following neutron beam requirements were obtained:

Trip duration	Max. number of trips					
1 second - 6 seconds	758 trips per day					
6 seconds - 1 minute	136 trips per day					
1 minute - 6 minutes	12 trips per day					
6 minutes - 20 minutes	350 trips per year					
20 minutes - 1 hour	99 trips per year					
1 hour - 3 hours	33 trips per year					
3 hours - 8 hours	17 trips per year					
8 hours - 1 day	6.7 trips per year					
More than 1 day	3.25 trips per year					

Note: annual operation is assumed to be 200 days

Neutron beam reliability and availability requirements



EUROPEAN

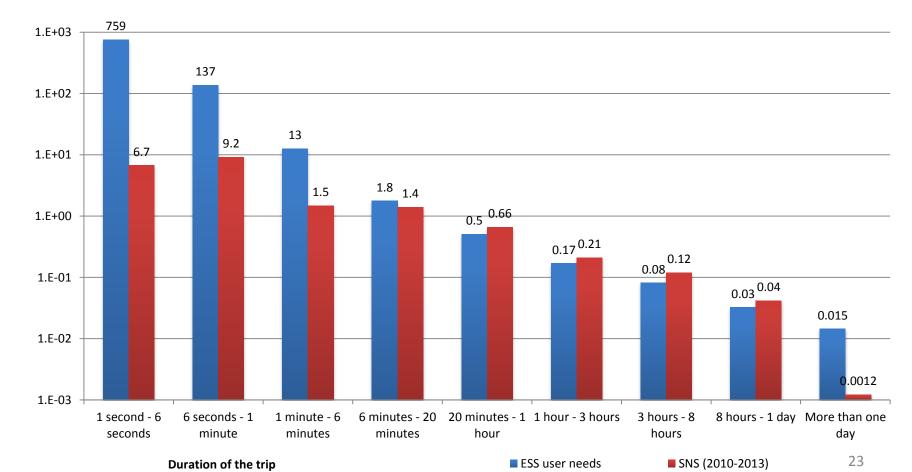
SPALLATION SOURCE

 \rightarrow

Neutron beam reliability and availability requirements

EUROPEAN

SPALLATION SOURCE


 \rightarrow

ESS users needs compared to SNS operation

EUROPEAN SPALLATION SOURCE

Comparison of ESS users needs with data recorded during operation at SNS (beam trips and downtime from fiscal years 2010 to 2013 - data sent by Charles C. Peters and George Dodson)

ESS neutron beam trips requirements

		Trip duration	Max. number of trips
		1 second - 6 seconds	120 trips per day
Reduce the number of	$\left \right\rangle$	6 seconds - 1 minute	40 tips per day
trips allowed	U	1 minute - 6 minutes	5 trips per day
		6 minutes - 20 minutes	350 trips per year
		20 minutes - 1 hour	99 trips per year
		1 hour - 3 hours	33 trips per year
		3 hours - 8 hours	17 trips per year
		8 hours - 1 day	6.7 trips per year
	(1 day - 3 days	2.9 trips per year
Divide the "more than 1	$\left \right\rangle$	3 days - 10 days	1 every 4 years

more than 10 days

day" bin into 3 bins

Requirements allocation

Requirements allocation

- A first allocation of the requirements was done following two methodologies:
 - Comparison with SNS distribution of failures (with the necessary assumptions)
 - Expert opinion, failures tracking and possible downtime for different systems

Downtime duration	Accelerator	Target	ICS	SI	
1 second - 6 seconds	We can stop the proton source without further problems		No possible failures		
6 seconds - 1 minute	Maybe the source could accept to be in standby for more time or it could be faster to come back or the ramp-up takes	e the source could accept to be in standby for more time		No possible	
1 minute - 6 minutes	longer. Possible accelerator tuning time if a cavity fails and we have to retune.	ils and we			
6 minutes - 20 minutes	Typical time if something happen and the operator has to do		Software, false trips or restart en electronic component		
20 minutes - 1 hour	changes in the configuration or any operator action. Restart proton source, ramp-up etc.			Electric grid	
1 hour - 3 hours	Fast maintenance on components outside the tunnel. Restart an electronic component, etc.	Instrumentation failure	Component failure. Maintenance needed	glitch? Change one line for the other	
3 hours - 8 hours 8 hours - 1 day	Repair or replace a component or fast maintenance inside the tunnel.	Water cooling pump exchange?		Components failure.	
1 day - 3 days	Major failure of a big component	Any hydrogen non-critical cooling system failure		Maintenance required	
3 days - 10 days more than 10 days	Big problem. E.g. repair cavity tuning system (15 days) Change cryomodule (2.5 months)	Moderator failure	No possible failures	Very rare	

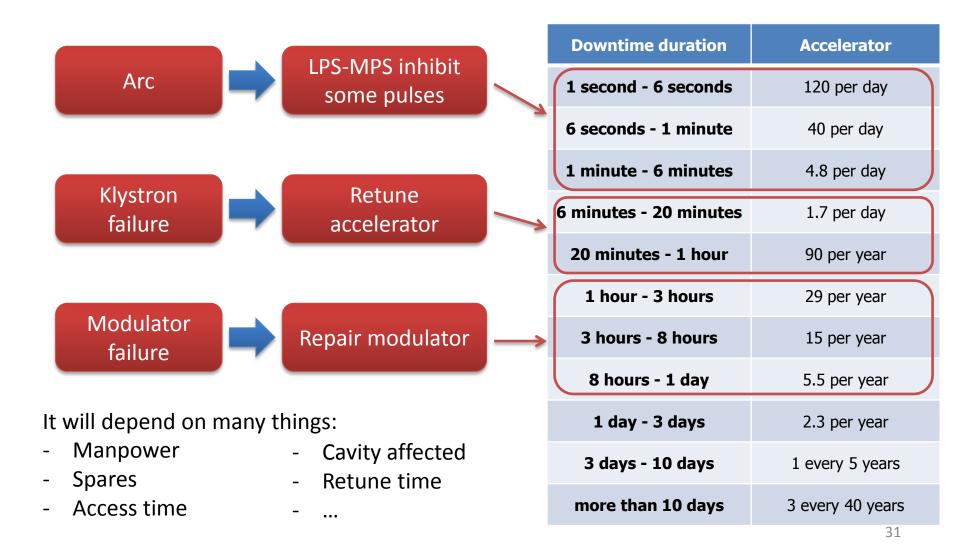
Requirements allocation

• The result of the preliminary allocation is the following:

Downtime duration	Accelerator	Target	ICS	SI
1 second - 6 seconds	120 per day	-	-	-
6 seconds - 1 minute	40 per day	-	-	-
1 minute - 6 minutes	4.8 per day	-	40 per year	-
6 minutes - 20 minutes	1.7 per day	-	10 per year	-
20 minutes - 1 hour	90 per year	2 per year	4 per year	3 per year
1 hour - 3 hours	29 per year	1 per year	2 per year	1 every 2 years
3 hours - 8 hours	15 per year	1 every 2 years	1 every 2 years	1 every 2 years
8 hours - 1 day	5.5 per year	1 every 2 years	1 every 5 years	1 every 3 years
1 day - 3 days	2.3 per year	1 every 2 years	-	1 every 10 years
3 days - 10 days	1 every 5 years	1 every 20 years	-	-
more than 10 days	3 every 40 years	1 every 40 years	-	-

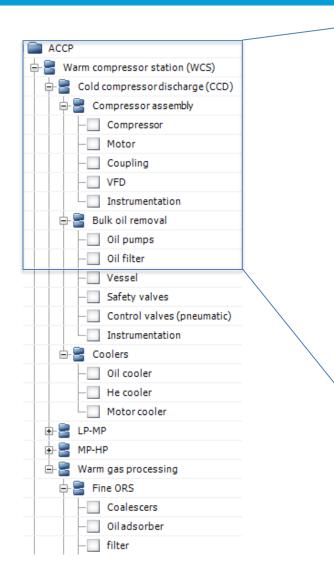
Beam power degradation

It is possible to decrease proton beam power to 50% of the scheduled beam power without considering it a beam trip. However, the average proton beam power over 10 days shall be higher than 80% of the scheduled beam power.


- Some accelerator and target failures may imply to reduce proton beam power instead of stopping the beam:
 - En event that would reduce the beam power to 50% of the scheduled power could have a maximum duration of about 4 days.
 - The scheduled beam power could be reviewed every two weeks in case of a permanent degradation.
- User community: users will always prefer beam availability to beam power.

Accelerator RAMI analyses

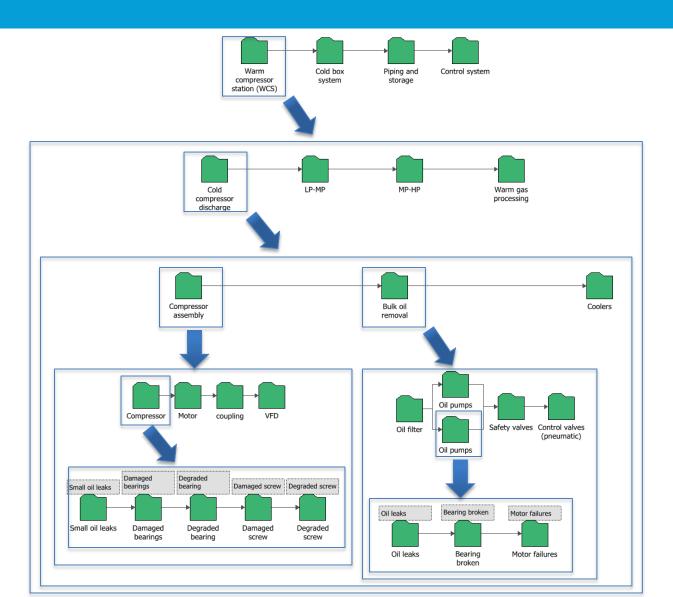
Failure examples



FMEA (Failure Mode and Effect Analysis)

						Consequences Reliability						Maintenance								
Level	Component	Number of component	Function	Failure mode	Possible causes	Locally	Next level	On the Beam	Random (data)	Random (level)	Lifetime (data)	Lifetime (level)	On demand	Corrective actions	Preventive actions		Access time (h)	Time to repair	Time to restart locally (h)	Time to restart next level (h)
1	Vacuum system	1																		
2	Vacuum beam pipe	1		Vacuum not good for operation																
3	Ion source	1																		
				Random mechanical problem	Random failure	Pump not operative	3 out of 4 must be operative otherwise the vacuum is not good enough	No beam		3				Replace pump		Pump	4	1	3	2
4	Turbo pump	4	Pump vacuum from ion chamber	Mechanical wear out	Wear out	Pump not operative	3 out of 4 must be operative otherwise the vacuum is not good enough	No beam				3			Current sensor. Replace pump	Pump	4	1	3	2
				Power supply failure (controller)	Random failure	Pump not operative	3 out of 4 must be operative otherwise the vacuum is not good enough	No beam		3				Replace controller		Controller	0	1	0.1	0.5
4		2	Pump vacuum	Random mechanical problem	Random failure	Pump not operative	1 out of 2 must be operative otherwise the vacuum is not good enough	No beam		3				Replace pump		Pump	4	1	3	2
4	Multi roots	2	from ion chamber	Mechanical wear out	Wear out	Pump not operative	1 out of 2 must be operative otherwise the vacuum is not good enough	No beam				4			Current sensor. Replace pump	Pump	4	1	3	2
4	Valves (not gate valve)	8	Isolete pump from beam vacuum for maintenance	Vacuum leak	Random failure	Air in beam pipe	Lose vacuum	No beam		4				Replace valve		Valve	4	1	3	2
4	Gauge	6?	Mesure vacuum	No signal/wrong signal	Random failure	No vacuum data at one point	If X gauges fail, we can't measure the vaccum	No beam (or maybe we can always continue if there are no loses detected by the BLM?)		3					Replace failed gauges	Gauge	4	1	3	2
3	RFQ	1																		
				Random mechanical problem	Random failure	Pump not operative	2 out of 3 must be operative otherwise the vacuum is not good enough	No beam		3										
4	Turbo pump	8	Pump vacuum from beam	Mechanical wear out	Wear out	Pump not operative	2 out of 3 must be operative otherwise the vacuum is not good enough	No beam				3								
			pipe	Power supply failure	Random failure	Pump not operative (one ?)	Bad vacuum	No beam		2										
				Controls failure	Random failure	Pump not operative	2 out of 3 must be operative otherwise the vacuum is not good enough	No beam		4									32	

FMEA Import to ReliaSoft



	0.998622
E Warm compressor station (WCS)	0.998622
Cold compressor discharge (CCD)	0.998622
Compression discharge (CCD)	0.999174
	0.999674
Compress He from SP to LP	0.999674
Compress the from Sr to EP	0.999875
Damaged bearings	0.999950
Degraded bearing	0.999875
Damaged screw	1.000000
Degraded screw	0.999975
	0.999775
Drive the compressor	0.999775
Oamaged bearing	0.999950
⊕ ● Degraded bearing	0.999875
	0.999950
coupling	0.999925
E S Coupling between the compressor and motor	0.999925
E Coupling adjustment	0.999950
⊕ ● Damaged coupling	0.999975
	0.999800
Variable frequency drive	0.999800
Higher temperature	0.999950
E- Capacitor failure	0.999975
Other VDF failures	0.999875
🕂 🖹 Bulk oil removal	0.999448
- Oil pumps	0.999573
E- Circulate the oil	0.999573
• • • Oil leaks	0.999749
🗈 💽 Bearing broken	0.999950
H- Motor failures	0.999875
Dil filter	1.000000
E-D filter	1.000000
Blockage	1.000000

Reliability Block Diagram

34

- Cryoplant warm-up: from 6 months to 3 years
- RF Interlock PLC's: more reliable solutions
- Tetrodes vs. Klystrons for the spokes in different configurations
- Solid State amplifiers configuration for the bunchers
- DC magnets vs. Pulsed magnets
- Selection of reliable arc detectors

Other related activities

- Many related activities are being done. Some examples are:
 - Beam physics studies to determine degraded modes of operation and flexibility of the machine are being done.
 - Link between MPS, LPS and accelerator performance in order to allow a good protection of the machine without affecting the overall operation.
 - Operation and maintenance plans with accelerator start-up and rampup procedures (users, schedule power and calendar...).
 - Risk analyses (e.g. warming-up cryomodules).

- ...

Conclusions

Conclusions

- Work is advancing in the right direction
- Requirements and preliminary allocation are done
- Comparisons with other facilities show that the requirements will be difficult to achieve: an important effort is needed
 - Perform RAMI analyses (more focus on the weak spots)
 - Include RAMI requirements where needed
 - Consider RAMI in the design decisions

Thanks for your attention!

Back-up slides

Organization

EUROPEAN SPALLATION SOURCE

XFWG on reliability

RAMI group

- Accelerator
 - Enric Bargalló
 - Andreas Jansson
- Target
 - Eric Pitcher
- Instruments and science
 - Ken Andersen
 - Arno Hiess
 - Robert Connatser
- ICS
 - Annika Nordt
- Site infrastructure
 - Ronny Sjöholm
- Systems engineering
 - Johan Waldeck

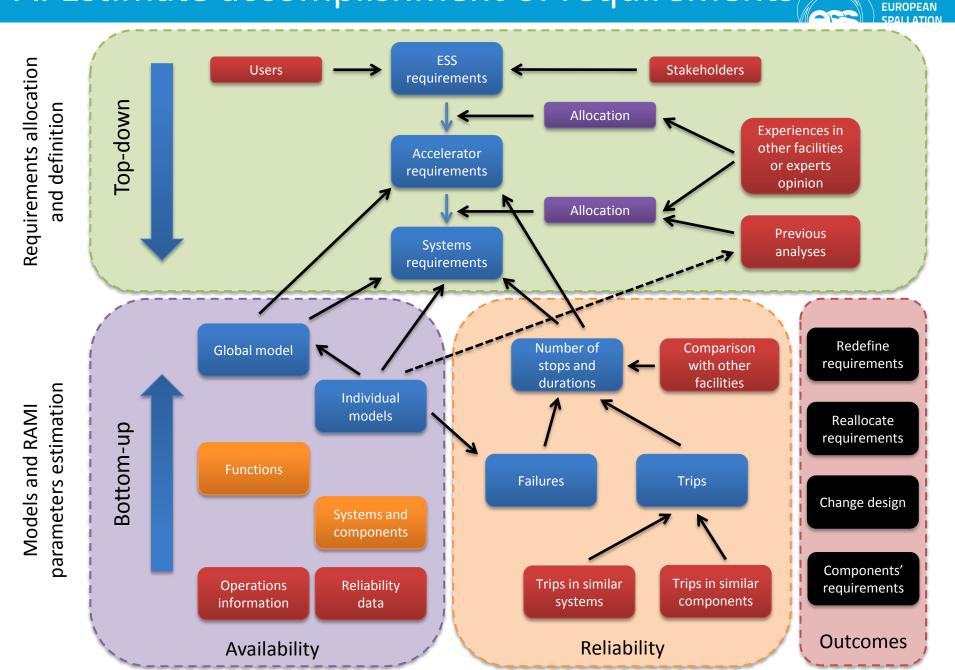
- Accelerator
 - Enric Bargalló
- Target
 - Alex Garcia (partially)
- Instruments and science
 - Peter Sångberg (only coordination)
- ICS
 - Student?
- Site infrastructure
 - Björn Yndemark (partially)

Requirements assumptions

- These requirements do not apply to the commissioning phases of the subsystems or to the initial operations.
- There are enough scheduled maintenance periods to allow for proper preventive maintenance.
- Proton beam power has been set as the parameter that defines the degraded modes of operation and limits from the user perspective. This allows an easy interpretation for Target, Accelerator and NSS.
- The cascade effects of the failures on one system to the neutron beam availability will be accounted to the system that caused the failure. This can have a major impact in subsystems that supply others. The consequence of failures will take total ESS downtimes (e.g. a few minutes electrical power blackout will imply several hours of downtime for ESS) into account.
- Negligibly small neutron spectrum changes are expected when the accelerator reduces its power to 50% of its nominal value. It is assumed that will not affect the experiments.
- No catastrophic events coming from outside ESS are considered in the requirements.
- Internal fire and other catastrophic events are not included in this analysis. It is considered that the corresponding responsible teams will reduce their probability and consequences.
- Problems that occur in the maintenance periods are not considered in these analyses. Those problems might be analyzed, but are not in the scope of the current document.
- Human reliability related problems should also be included when relevant.

RAMI definitions

• **Reliability**: Probability of success over a certain period of time


E.g. probability that the proton beam will not have any trip for one hour

• Availability:

 $Availability = \frac{Uptime}{Scheduled\ uptime}$

- **Maintainability**: capability of performing maintenance to a system or component.
- **Inspectability**: capability to inspect, test and monitor a system and its possible failures.

A. Estimate accomplishment of requirements

